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THE 4-TRIANGLES LONGEST-SIDE PARTITION OF 
TRIANGLES AND LINEAR REFINEMENT ALGORITHMS 

MARIA-CECILIA RIVARA AND GABRIEL IRIBARREN 

ABSTRACT. In this paper we study geometrical properties of the iterative 4- 
triangles longest-side partition of triangles (and of a 3-triangles partition), as 
well as practical algorithms based on these partitions, used both directly for the 
triangulation refinement problem, and as a basis for point insertion strategies 
in Delaunay refinement algorithms. The 4-triangles partition is obtained by 
joining the midpoint of the longest side with the opposite vertex and the mid- 
points of the two remaining sides. By means of simple geometrical arguments 
we show that the iterative partition of obtuse triangles systematically improves 
the triangles (while they remain obtuse) in the following sense: the sequence 
of smallest angles monotonically increases while the sequence of largest angles 
monotonically decreases in an amount (at least) equal to the smallest angle of 
each iteration. This allows us to improve the known bound on the smallest 
angle (without making use of previous results), and to obtain a better a pri- 
ori bound on the number of similarly distinct triangles, as a function of the 
geometry of the initial triangle. Numerical evidence, showing that the prac- 
tical behavior of the 4-triangles partition is in complete agreement with this 
theory, is included. A 4-triangles refinement algorithm is also discussed and 
illustrated. Furthermore, we show that the time cost of the algorithm is linear 
independently of the size of the triangulation. 

1. INTRODUCTION: THE TRIANGULATION REFINEMENT PROBLEM 

During the last 10 years an increasing effort has been devoted to the develop- 
ment of adaptive and/or multigrid finite element methods [1, 4, 13, 14]. In this 
context, adaptivity of the grid is the central feature that relieves the user of critical 
decisions and allows use of all flexibility of the finite element method for getting 
a minimum number of vertices. In this sense, the generation of the discretization 
(triangulation) should not be a first separate step of the finite element solution 
process, but a dynamic adaptive process. In order to deal with singular solutions, 
the capability for managing local refinement of the discretization is indispensable, 
and mesh refinement algorithms that maintain the nondegeneracy of the elements 
and the conformity and smoothness of the grid are certainly desirable. Conformity 
refers to the requirement that the intersection of nondisjoint triangles is either a 
common vertex or a common side, and the smoothness condition states that the 
transition between small and large elements should be smooth. 

The algorithms based on the longest-side bisection of triangles were developed 
to deal with this specific question [11, 12, 13, 14, 15, 16]. They guarantee the 
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construction of good-quality irregular and nested triangulations. This is due both 
to the boundedness condition on the small angles of the triangles generated, and 
to the natural refinement propagation strategy outside the target refinement area 
(which ensure the construction of smooth irregular triangulations). Furthermore, in 
spite of this inherent propagation strategy, the time cost of this kind of algorithms 
is linear, independently of the size of the triangulation [19]. 

The algorithms have been successfully used to implement adaptive (and adaptive 
multigrid) software in two dimensions [8, 10, 13, 14], and have been generalized and 
used in the 3-dimensional context [5, 7, 18]. Derefinement algorithms, suitable to 
refine and derefine the mesh in the course of adaptive computations, such as needed 
in complex time-dependent problems (which require moving regions of refinement) 
have also been developed [16]. Recently, the 2D algorithms have been used both for 
surface fitting, by means of automatic and adaptive Powell-Sabin Splines over trian- 
gulations [3], and to develop parallel refinement algorithms for complex applications 
[6, 22]. Longest-side based partitions of triangles have also been the basis of point 
insertion strategies that ensure the construction of good-quality triangulations, for 
local Delaunay refinement algorithms [2, 10]. 

It should be pointed out here that the triangulation refinement problem [17, 19] is 
essentially different than the classical triangulation problem in the following sense: 
instead of having a fixed set of points to be triangulated, one has the freedom to 
choose the points to be added in order to construct a mesh with a desired resolution. 
The construction of the mesh is dynamically performed. Furthermore, it is possible 
to exploit the existence of the reference triangulation (constructed for instance by 
means of the Delaunay algorithm) in order to reduce the computational cost to 
construct the refined mesh. 

By introducing a subregion R to define the refinement area (usually a changing 
set of triangles in the adaptive context), a condition over the diameter (longest- 
side) of the triangles, and a resolution parameter e to fix the desired resolution, 
the Triangulation Refinement Problem can be stated as follows: given an acceptable 
triangulation of a polygonal region Q, construct a locally refined triangulation such 
that the diameter of the triangles that intersect the refinement area R be less than 
.? 

In the context of the triangulation refinement problem, the algorithms based on 
the longest-side bisection of triangles benefit from a natural point insertion strategy 
(longest-side midpoint insertion) which together with the boundedness condition on 
the small angles generated and their inherent propagation strategy, guarantee the 
construction of good-quality smooth irregular triangulations. On the other hand, 
even when the Delaunay algorithm constructs the optimal mesh (the most equilat- 
eral one) for the classical triangulation problem (given a fixed set of vertices), this 
algorithm does not have a natural point insertion strategy that guarantees the con- 
struction of good-quality irregular triangulations when the algorithm is iteratively 
used to refine a mesh. Simple experiments with the "intuitive" centroid insertion 
idea show that this strategy rapidly deteriorates the quality of the triangulations 
(especially along the boundaries), even when global refinement is performed. To 
illustrate this fact, Figure 1 shows three different steps of the global iterative De- 
launay refinement of an initial simple triangulation (a single triangle). The centroid 
of each triangle of the current triangulation was iteratively added as a point to be 
inserted in each refinement step. After a few refinement steps, a quite unacceptable 
triangulation is obtained (triangulation (c) in Figure 1). 
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(c) 

FIGURE 1 

Briefly, in order to obtain robust local Delaunay refinement software, it is nec- 
essary to make use of a companion methodology that automatically introduces a 
point distribution that (after arbitrary steps of local refinement) guarantees the 
construction of smooth nondegenerate triangulations. As was pointed out previ- 
ously, the longest-side based partition of triangles has been the basis to develop 
mixed longest-side bisection Delaunay refinement algorithms [2, 10], which ensure 
the construction of such triangulations. Thus, for instance, Penman and Grieve 
[10] use a heuristic method that chooses between either a longest-side midpoint 
insertion strategy, or a centroid insertion strategy, depending on the shape of the 
triangles involved. On the other hand, Bova and Carey [2] have developed a more 
sophisticated method that takes advantage of the fractal properties of the longest- 
side bisection algorithms [2, 19] to introduce an automatic graded distribution of 
points. In [10], triangulations of analogous quality to those obtained with Rivara 
refinement algorithms have been reported. 

It should be emphasized here that both the longest-side bisection refinement al- 
gorithms and the mixed (longest-side bisection) Delaunay refinement algorithms are 
competitive linear algorithms for dealing with the triangulation refinement prob- 
lem [19]. However, pure longest-side bisection-based algorithms are the most suit- 
able ones in two important contexts: (1) in the adaptive refinement/derefinement 
of triangulations such as needed in complex time-dependent problems [16]; (2) 
in the practical use of multigrid finite element methods over irregular meshes 
[4, 12, 13, 14, 15, 16] (since the algorithms guarantee the construction of nested 
triangulations). Finally, it should be pointed out also that 3D longest-edge bisec- 
tion refinement algorithms for tetrahedral meshes have shown to be very useful in 
practice [5, 7, 18]. However, in this context there are no mathematical results avail- 
able analogous to those of this paper or to those of references [20, 21] (which were 
indeed the basis to initially develop the algorithms). Notice that the 3D problem 
has been considered an interesting open problem in the Computational Geometry 
field [9]. 

The results we include here characterize in a geometrical sense the point distribu- 
tion introduced by longest-side refinement algorithms in two dimensions, and were 
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found looking for new paths to deal with the 3-dimensional problem. In particular, 
in this paper we show that the iterative 4-triangles partition of obtuse triangles 
systematically improves the triangles (while they remain obtuse) in the following 
sense: the sequence of smallest angles monotonically increases while the sequence of 
largest angles monotonically decreases in an amount (at least) equal to the smallest 
angle of each iteration. This allows us to improve the known bound on the small- 
est angle, without making use of the previous result on the longest side bisection 
[20, 21], and to obtain a better a priori bound on the number of similarly distinct 
triangles as a function of the geometry of the triangle. We also include numerical 
evidence showing that the practical behavior of the 4-triangles partition is in com- 
plete agreement with the theory. A practical 4-triangles refinement algorithm is 
also introduced, discussed and illustrated. Finally, we show that the time cost of 
this algorithm is linear independently of the size of the triangulation. 

2. THE 4-TRIANGLES PARTITION: DEFINITIONS, NOTATIONS AND 

STATEMENT OF THE PROBLEM 

Definition 1. The longest-side partition of any triangle t is obtained by joining 
the midpoint of the longest side of t with the opposite vertex. The 4-triangles 
longest-side partition is obtaining by joining the midpoint of the longest side with 
the opposite vertex and the midpoint of the two remaining sides (see Figure 2(b)). 

Notation. For any triangle t, its sides and angles will be respectively denoted in 
decreasing order r, > r2 > r3, and -y > 13 > a. In addition, r4 will be the new side 
generated by joining the midpoint of the longest side and the opposite vertex (side 
CD in Figure 2(b)). Furthermore, t(a,/3, y) will be the class of similar triangles 
of angles -y > 3 > ac. Interchangeably, t will represent an element of the class 
t E t(ca, /, y) or the class itself. 

Since the first 4-triangles longest-side partition of any triangle to introduces new 
sides parallel to the sides of to, the following results hold: 

Proposition 1. (a) The first 4-triangles longest-side partition of any triangle to 
produces two triangles similar to to and two (potentially) new similar triangles t, 
(see Figure 2(b)). 

(b) The iterative 4-triangles longest-side partition of any triangle t introduces 
(at most) one new distinct (up to similarity) triangle for iteration. E 

In the remainder of this paper we shall always consider the triangle t, (the unique 
distinct triangle obtained after the first 4-triangles partition of to) which has the 
midpoints of r, and r2 as vertices (see Figure 3). 

C 

r3 ~~~~~~~~~~1t1 
to 

_ _ _ _ _ _ _ _ _ _ _ A 0 tB 
r, D 

(a) (b) 

FIGURE 2 
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FIGURE 3 

Notation. For the triangle tj, we shall call c, u, 6 the angles of tj having, respec- 
tively, the following vertices: the vertex of to opposite to the longest side, the 
midpoint of r1, and the midpoint of r2. 

The first aim of this paper is to prove that for general obtuse triangles, the 
iterative 4-triangles longest-side partition, produces a finite sequence of "better" 
triangles satisfying the properties illustrated in the following diagram until tN be- 
comes nonobtuse, 

to t 4 t2 4 4 tN-1 tN 

(obtuse) (obtuse) (obtuse) (obtuse) (NONOBTUSE) 
?to a,1 > ato ?a2 > al aWN-1 > aWN-2 OaN > aWN-1 

Yo 'Y1 < 'Yo - ?l. 'Y2 < Y1 - Y2 N-1 < YN-2 - AN-1 YN < YN-1 -AN 

DIAGRAM 1 

where ai and -yj are respectively the smallest and the largest angles of triangle ti. 
The arrow emanating from triangle tj to triangle tj+1 should be understood in the 
following sense: the (first) 4-triangles longest-side partition of triangle tj produces 
the new (similarly distinct) triangle tj+3. 

Notice that, according to the diagram, the smallest angles monotonically in- 
crease, while the largest angles are clearly decreasing in an amount (at least) equal 
to the smallest angle of the current iteration. This allows one to establish a sharp 
a priori bound for N. 

Furthermore, in the case of nonobtuse triangles, at most two similarly distinct 
triangles are generated (by iterative use of the 4-triangles longest-side partition). 
This means that for each nonobtuse triangle t, there exists an obtuse triangle t such 
that t generates t and t generates t. As a consequence, the process described in the 
preceding diagram can only finish in one of the three ways illustrated in Diagram 
2. 

In Diagram 2, tN1 and tN are the last two triangles of Diagram 1. Notice that 
in the three cases the process finishes with a closed loop: either two triangles are 
generated alternately (cases 1 and 3), or the right triangle generates itself (case 
2). Only in the third case can tN+1 be "worse" than the preceding triangles, in 
the sense that a triangle can be generated having a largest angle greater than the 
preceding ones. 
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(1) tN-1 tN YN-1 + aN 

obtuse nonobtuse 

(2) tN-1 - t "YN = 7/2 

obtuse right-angled 

(3) tNl-I tN tN+1 "/N + YN+1 =X 

obtuse nonobtuse obtuse 

DIAGRAM 2 

3. PROPERTIES OF THE 4-TRIANGLES LONGEST-SIDE PARTITION OF 

NONOBTUSE TRIANGLES 

The following lemma allows us to restrict the number of cases to be studied. 

Lemma 1. The first 4-triangles longest-side partition of any triangle to of sides 

rl > r2 > r3 and angles -yo > 130 > ao produces a new triangle ti (of angles 

71 ? /3 > a1) such that 

(a) -yj i4 #, 
(b) a, #4 . 

Proof. First consider the case r1 = r2 > r3. This implies that to is nonobtuse, 

'Yi = 6 > 7r/2 and a1 = e, and the result holds. For the case ri > r2 > r3, consider 
triangle t1 equal to triangle ABC in Figure 4. In this figure, the angle & is opposite 
side AB which is equal to r3/2, and angle a is opposite side BC which is equal to 
r2/2. Since r3/2 < r2/2, it follows that & < , which in turn implies the result. El 

Remark. An ambiguity arises in the case r1 > r2 = r3, which implies that e = o (ti 
is isosceles), and consequently, either 'Yi = s = a or a1 = = a. In order to be 
consistent with Lemma 1, in the remainder of this paper we shall assume that -yj 
= o in the first case and a1 = c in the second case. With this convention, the 
results of Lemma 1 are valid for any triangle to of sides r1 > r2 > r3 and angles 

-yo > 3o > ao. 

C 

r2 

r3 f_ B 
to a7 to 

A 

FIGURE 4 
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t2 

FIGURE 5 

The following theorem characterizes the first partitions of nonobtuse triangles: 

Theorem 1. If to is a nonobtuse triangle of largest angle -yo < 7r/2, then tj is an 
obtuse triangle such that 

(a) -Yi = 6, 
(b) 'yo + 'y1 = ir and either t1 is an obtuse triangle (-yo < 7r/2), or t1 is a right 

triangle (if yo = 7r/2), 
(c) the 4-triangles longest-side partition of tj produces to. 

Proof. According to Figure 4, -yo + 6 = ir, and since -yo < 7r/2, clearly 6 > 7r/2, 
which implies ^Yi = 6 and ^yo + Yi = ir. Furthermore, because of ^Yi = 6 in Figure 4, 
the partition of t1 must be necessarily performed as illustrated in Figure 5, which 
produces a triangle t2 of sides parallel to the sides of to, so that t2 is similar to 
tl. D 

Corollary 1. If to is a right triangle, then t1 = to and the iterative partition of to 
only produces to itself. El 

Corollary 2. The iterative 4-triangles longest-side partition of any nonobtuse tri- 
angle with '}o < ir/2 produces two distinct (up to similarity) triangles to and tj such 
that triangle t1 satisfies the properties of Theorem 1. Furthermore, t1 only produces 
the triangles to and tj. DH 

4. PROPERTIES OF THE 4-TRIANGLES LONGEST-SIDE PARTITION OF 

OBTUSE TRIANGLES 

The following theorem characterizes the triangles obtained by means of the 4- 
triangles longest-side partition of obtuse triangles. 

Theorem 2. The 4-triangles longest-side partition of any obtuse triangle to (yo > 
7r/2) produces a new triangle t1 of smallest angle a, > ao and largest angle ^Yj < 

- a,. Furthermore, either 'yj = a' while t1 remains obtuse; or 'yj = 6 and 
'}o + 'yi = Xi, when tj becomes nonobtuse. 

Proof. Notice that the hypothesis ^Yo > ir/2 implies ^yo > 30 > ago and r, > r2 > r3. 
According to Lemma 1, after one 4-triangles longest-side partition of to, the largest 
angle ^Yi of tj can be either a or 6 in Figure 3. 

In the case ^Yj = 6, clearly ^Yi = r- ^yo < 7r/2 and t1 is a nonobtuse triangle, 
a, = e < co and ^yj < ^yo - a,. In the case ^Yj = a, the angles of tj are distributed 
as shown in Figure 6(b) (according to Lemma 1), where a, can be either ? or 
6. We shall show that in both cases the hypothesis holds. Consider a, = e and 
triangle ABC. In this triangle, the angles e and ago are respectively opposite the 
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C 

r ~ r A 
r45 

r, ~~~~~~A 
(a) (b) 

FIGURE 6 

sides rj/2 and r4. Because of the position of 'y} it follows that r2/2 > r4, and since 
rl > r2, necessarily ri/2 > r2/2 > r4, which implies ? > aeo. Furthermore, the 
angle of vertex C is eyo = -yi + ?, which implies -yj = yo- e, and the hypothesis 
holds. Consider now the angles a, = 6 and ao. In this case, 6 = r- -Yo, and since 
eyo = 7r- ao - 3o, it follows that 6 > aco and a, > aco. Furthermore, the angle of 
vertex C is -yo = -yj + e = -Yj + p1, which implies -y = yo - < 'Yo - ? 

The following theorem characterizes the iterative partition of obtuse triangles. 

Theorem 3. The iterative 4-triangles longest-side partition of any obtuse triangle 
to produces a finite sequence of "better" distinct (up to similarity) triangles {ti}f 
such that 

(a) t% is obtuse for i = 1, 2, ... , N - 1, and tN is nonobtuse, 

(b) aj > oaj1 for j= 1, ..., N, 

(c) -y3 < -y3 -1 -aj for j =1, 2, . . . , N. 

(d) the next partition of tN only (at most) produces a new obtuse triangle tN+l, 

and at this point the generation of new triangles stops. 

Proof. Parts (a), (b) and (c) follow from a direct iterative application of Theorem 
2. Part (d) is a consequence of Theorem 1 and Corollaries 1 and 2. 0 

Corollary 3. The iterative partition of any obtuse triangle to produces a sequence 
of distinct (up to similarity) triangles {tJ}$N, t% obtuse for i = 1, .. ., N-1 and tN 
nonobtuse, such that aj > ao and -yj < -yo - jao for j = 1, 2,.. N . In addition, 
only (at most) a new obtuse triangle can be obtained by partition of tN. ?I 

Finally, Corollary 3 allows us to establish an a priori bound on the number of 
distinct triangles generated as a function of the geometry of the initial triangle. 

Theorem 4. For any obtuse triangle t, the number K of distinct (up to similarity) 
triangles generated throughout the process is bounded as follows: 

K? FFo 31+1 

Proof. From Corollary 3, the angle -yN satisfies 

7r/3 < YN < yo -No, 

which implies N < YOr/31. Since at most a new distinct (obtuse) triangle is 
generated in iteration N + 1, then K < N + 1 and the result holds. LI 
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5. A 3-TRIANGLES PARTITION 

As a by-product of the study performed in the preceding sections, we have im- 
plicitly introduced a 3-triangles longest-side partition that also improves obtuse 
triangles and that can be used to advantage (together with the pure longest-side 
bisection) to perform refinement propagation in local refinement algorithms for 
triangulations [12, 15]. 

Definition 2. The 3-triangles longest-side partition of any triangle to (of sides 
ri > r2 > r3 and angles -yo > 30 > ao) is obtained by joining the midpoint of 
the longest side r, with the opposite vertex and the midpoint of side r2. (For an 
illustration see Figure 7). 

C 

E 

t 2 

B DA 

FIGURE 7 

This partition also improves obtuse triangles, as stated in Theorem 5. 

Theorem 5. The 3-triangles longest-side partition of any obtuse triangle to (of 
angles -yo > /30 > ao) produces two new distinct (up to similarity) triangles ti = 

ti (-Yi, pi, ai) which are better than to in the following sense: 

-yi < yo and ai > ao f or i = 1, 2. 

Proof. Clearly, two new (distinct) triangles are generated: triangles t1 and t2 of 
Figure 7. For the triangle t1, the result follows directly from Theorem 2. Let us 
consider triangle t2. First we shall study y2, the largest angle of triangle t2. Clearly, 
6 < -Yo and 3o < too. Moreover, to is a nonisosceles, obtuse triangle, which implies 
a < 7T/2 < -yo. Thus, y2 < yo. Now we shall consider a2, the smallest angle of 
triangle t2. Clearly, f0 > ao and 6 > 7r/4 > ao while from Theorem 2 it follows 
that a = ao + ? < a0 + a,, which together implies a2 > ao. 

6. NUMERICAL EXPERIMENTS 

In order to illustrate the practical behavior of the 4-triangles longest-side par- 
tition of triangles, we have included in Table 1 the sequence of distinct (up to 
similarity) triangles generated for six different input triangles. In this table, each 
triangle has been identified by its interior angles (in decreasing order), the input 
triangle being the first one of each column (iteration 0). For each sequence we have 
also included the exact number of distinct (up to similarity) triangles generated, as 
well as the a priori computed bound of Theorem 4. 

Notice that the numerical results obtained are in complete agreement with the 
theory: the iterative 4-triangles longest-side partition of obtuse triangles system- 
atically improves the triangles (both the sequence of largest angles monotonically 
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TABLE 1. Sequences of distinct triangles obtained by 4-triangles 
longest-side partition of triangles 

Triangle 1 Triangle 2 
number of distinct triangles 15 number of distinct triangles 11 

computed bound 45 computed bound 190 
It. MY I I al - Y I A 3 a 

0 145.455 32.595 1.950 173.972 5.423 0.605 
1 143.292 34.545 2.164 173.216 6.028 0.756 
2 140.885 36.708 2.407 172.245 6.784 0.971 
3 138.200 39.115 2.684 170.952 7.755 1.293 
4 135.202 41.800 2.998 169.148 9.048 1.804 
5 131.850 44.798 3.351 166.462 10.852 2.686 
6 128.107 48.150 3.743 162.066 13.538 4.396 
7 123.937 51.893 4.170 153.735 17.934 8.331 
8 119.316 56.063 4.621 133.923 26.265 19.812 
9 114.235 60.684 5.081 84.274 49.648 46.077 

10 108.715 65.765 5.520 95.726 43.599 40.676 
11 102.811 71.285 5.904 84.274 49.648 46.077 
12 96.618 77.189 6.193 
13 90.266 83.382 6.352 
14 89.734 83.907 6.359 
15 90.266 83.382 6.352 __ 

Triangle 3 Triangle 4 
number of distinct triangles 8 number of distinct triangles 4 

computed bound 73 computed bound 7 
It. MY I 0 I a Y I 3 | al 
0 169.900 8.572 1.527 114.624 54.900 10.475 
1 167.721 10.100 2.180 102.073 65.376 12.551 
2 164.371 12.279 3.349 88.250 77.927 13.824 
3 158.625 15.629 5.747 91.750 74.623 13.627 
4 146.921 21.375 11.704 88.250 77.927 13.824 
5 117.268 33.079 29.652 
6 63.237 62.732 54.031 
7 116.763 33.270 29.967 
8 63.237 62.732 54.031 

Triangle 5 Triangle 6 
number of distinct triangles 3 number of distinct triangles 2 

computed bound 5 computed bound 5 
It. aY | a I Al i 
0 130.542 27.127 22.332 116.565 45.000 18.435 
1 76.437 54.105 49.458 90.000 63.435 26.565 
2 103.563 39.659 36.777 90.000 63.435 26.565 
3 76.437 54.105 49.458 
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decreases and the sequence of smallest angles monotonically increases). Further- 
more, the partition of nonobtuse triangles produces reasonably good obtuse tri- 
angles, which in turn reproduce the same previous nonobtuse triangle, and so on, 
alternately, as explained in Diagram 2 of ?2 (the generation of new triangles stops 
when a previously generated triangle is reobtained). More specifically, triangles 1 
and 5 of Table 1 illustrate case (1) of Diagram 2, while triangle 6 illustrates case 
(2), and triangles 2, 3 and 4 illustrate case (3) of this diagram. Notice that in 
practice the input triangles having the smallest p0 produce better final triangles 
than those having the biggest i0. It seems this is due to the fact that the sequence 
of angles 3 is also a monotonically increasing sequence. 

7. A 4-TRIANGLES REFINEMENT ALGORITHM 

A 4-triangles refinement algorithm that uses 4-triangles partitions over the re- 
finement region R (variable in the adaptive context) and both 3-triangles partitions 
and longest-side bisections to assure conformity of the mesh (refinement propaga- 
tion), has been studied, discussed and illustrated in [15]. Software that combines 
this algorithm with an adaptive and multigrid (linear) finite element method has 
been extensively discussed in [13, 14]. Numerical experiments performed with this 
software to solve singular problems have shown that, in adaptive mode, the nu- 
merical rate of convergence of the finite element method approaches the maximum 
theoretical rate of convergence predicted for linear finite elements [13, 14]. 

A simpler 4-triangles refinement algorithm (whose time cost is easier to analyze) 
that only uses longest-side bisection of triangles in the refinement propagation step, 
can be schematically described as follows: 

Triangulation-refinement (r, R, ?) 

While there exist triangles t E T, t n R = 0 and diam(t) > e do 
Perform 4-triangles bisection of each t with t n R = 0 and diam(t) > e 
For each t E r having 1, 2 or 3 nonconforming side midpoints P do 
While P is nonconforming do 

Find the neighbor t* of t (by the side containing P) 
Longest-side bisection (r, t*) 

This algorithm makes use of the following recursive basic longest-side refinement 
algorithm (to refine a unique triangle t) [19]: 

Longest-side bisection (r, t) 
Perform a longest-side bisection of t 

(Let P be the point generated) 
While P is nonconforming do 

Find the neighbor t* of t (by the side containing P) 
Longest-side bisection (r, t*) 

Figure 8 illustrates the use of the 4-triangles refinement algorithm to perform one 
refinement step over the simple refinement region R = {t} in the triangulation of 
Figure 8(a). Here, first a 4-triangles partition of triangle t was performed, followed 
by the recursive longest-side bisection of the neighboring nonconforming triangles in 
order to make the mesh conforming (i.e., to eliminate the nonconforming midpoints 
1 and 2 in Figure 8(b)). 

To conclude this section, Figures 9 and 10 illustrate the practical use of the 
4-triangles refinement algorithm to solve adaptivelyy) the Laplace problem with 
Dirichlet boundary conditions over the polygonal re-entrant region of Figure 9. 
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The solution of this problem is the function u = r2/3 sin(20/3), which is singular 
at the origin, owing to the re-entrant corner. The triangulation of Figure 9 was 
adaptively constructed starting with a 5-triangles initial triangulation, while that 
Figure 10 corresponds to the numerical finite element solution obtained for this 
mesh. 

8. COST ANALYSIS: THE ALGORITHM IS LINEAR 

The time cost analysis of the algorithm should study its asymptotic behavior to 
obtain triangles of size E over the refinement region R. From this point of view the 
refinement algorithm performs two essential tasks: 

(i) Task 1. Insertion of N vertices inside the region R (refinement of the target 
triangles) which ensures that the tolerance condition on the diameters of the 
triangles is satisfied. 

(ii) Task 2. Insertion of K vertices outside the region R (by refinement of some 
nontarget triangles), which ensures the conformity of the refined mesh. 

Both issues should be addressed in the time-cost analysis of the algorithm. In 
[19], the cost analysis of the pure longest-side bisection refinement algorithm has 
been performed. We shall follow here an analogous reasoning to that of this paper. 

Since the time cost of each triangle partition (4-triangles partition and pure 
longest-side bisection) is constant, the time cost of inserting an arbitrary number 
of points in the input triangulation (a consequence of the partition of a set of 
triangles) is linear, independently of the size (number of vertices) of the input 
triangulation r. This allows us to state the following results: 

Theorem 6. The time cost of performing Task 1 and Task 2 is respectively linear 
in N (it the number of vertices inserted inside of R) and K (the number of vertices 
inserted in Q\R). 

Theorem 7. The number of points inserted in R (Task 1) is optimal. 

Proof. Since a finite number of distinct (up to similarity) triangles is used through- 
out the entire process (which only depends on the initial triangulation) the number 
of points inserted inside R (to obtain triangles of size E) is N = kNA, where k is a 
constant and N6 is the number of vertices used in an equilateral triangulation. D 

Thus, the key issues of the analysis have been reduced to answer the following 
question: how is the size of K compared with N ? The answer is certainly related 
to the properties of the distribution of points introduced in the propagation step of 
the pure longest-side refinement algorithm, which is used to conform the mesh in 
the algorithm of the previous section. To this end, we need to study the behavior 
of the (longest-side) algorithm to refine triangulations around one vertex. In this 
particular case, the refinement region is R = {P}, where P is a vertex. The one- 
triangle longest-side refinement algorithm of the previous section is iteratively used 
until the diameter of the triangles that share the vertex P is less than or equal to 
E. For this particular problem the following result holds [19]: 

Theorem 8. Let r be any conforming triangulation. For any vertex P of T, the 
arbitrary iterative use of the longest-side refinement algorithm to refine the trian- 
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gulation around vertex P divides the angles converging in P in a finite number of k 
parts. 

Proof. This follows directly from the fact that the angles obtained by longest-side 
bisection of any triangle are bounded [20]. D 

Definition 3. For any conforming triangulation r and any vertex P of T, we shall 
call the stable molecule associated with vertex P to be the fixed partition of the 
plane around vertex P, induced by the iterative use of the longest-side refinement 
algorithm, for refining the triangulation around the vertex P. The size of the stable 
molecule will be the number of angles converging in P. 

The examples of Figures 11 and 12 illustrate these ideas. More specifically, the 
shadowed polygons of Figures 11(a) and 11(b), respectively correspond to the stable 
molecule associated with the vertices C and P (the angles converging in C and P 
are not refined anymore). In Figure 12, the longest-side refinement algorithm was 
used over a one-triangle initial triangulation (triangle ABC) in order to respectively 
refine the triangulation around the vertices C and B. Notice that the first iterations 
of the algorithm around vertex C have constructed the stable molecule, while the 
next iterations of the algorithm only produce a fractal geometry around this vertex. 
In the case of vertex B, in contrast, the algorithm immediately "finds" the fractal 
geometry, since the stable molecule of vertex B is exactly defined by the sides AB 
and BC. 

All these ideas can be summarized in Theorem 9 [19] and used to prove Theorem 
10. 

Theorem 9. Let r be any conforming triangulation and consider any vertex P 
of T. The use of the longest-side refinement algorithm to refine the triangulation 
around the vertex P produces triangulations having the following characteristics: 

(a) After a finite number of iterations, the algorithm produces a triangulation r* 
such that the stable molecule associated with vertex P is obtained. 
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(b) The next iterations of the algorithm do not partition the angles of the stable 
molecule, but only introduce a set of new vertices distributed in geometric 
progression along the sides of the stable molecule of P. 

Proof. Part (b) follows from the fact that the triangles that share vertex P in each 
intermediate triangulation have longest side coincident with one of the straight line 
segments that defines the stable molecule, where P is one of its end points. Thus, 
the new points inserted are always the midpoints of these sides. [1 

Corollary 4. The arbitrary iterative refinement of any triangulation Tro produces 
triangulations of maximal stable molecule of size k < M, where M only depends on 
TO . 

Definition 4. The constant M of Corollary 4 will be called the stable molecular 
size of TO. 

Theorem 10. Suppose that the longest-side refinement algorithm is used to refine 
any triangulation r around any vertex (of stable molecule of size k). Then, once 
the stable molecule is obtained, the iterative refinement around vertex P to obtain 
triangles of diameter (longest side) h introduces K vertices, where 

K < k[1 + 1092(l + 2L/h)] 

and L is the length of the longest side of the stable molecule of P. 

Proof. Along each side PP of the stable molecule of P, the algorithm introduces a 
sequence of points P,, P2,..., Pj such that P1 is the midpoint of the side PP and Pj 
the midpoint of the side PPj-1. In order to ensure the condition on the diameters 
of the triangles to be obtained around the vertex P, in particular, for the longest 
side of the stable molecule, the algorithm should stop when h< h, where h is the ~~~~~~~~ _ 

length of the side PPj. But h >l<i<J 2' = L, which implies that h(2J - 1) = L 
and J=1+log2(1+L/h). Thus, along each side of the stable molecule of P (of the 
triangulation T), the algorithm introduces at most J vertices, and since the stable 
molecule has k arms, the result follows. C] 

Theorem 11. The time cost of solving the Point Triangulations Refinement Prob- 
lem to obtain triangles of given size is O(K), where K is bounded as in Theorem 
10. 

Theorem 12. Let ro be any conforming coarse triangulation (of stable molecular 
size M) of any bounded polygonal region Q. Then for any circular refinement subre- 
gion C, of radius r, with C C Q, the use of the 4-triangles refinement algorithm to 
solve the Triangulation Refinement Problem over C to obtain triangles of diameter 
h inside C, asymptotically introduces Ni points inside C and No points outside C, 
such that Ni and No are bounded as follows: 

(a) Ni < ki [1+7r(n2 + n)], 

(b) N0 < 7rk2n[1 + 1092(1 + L/h)], 

where k1 and k2 are constants, n = 2r/h and L is the maximum distance from the 
boundary of R to the boundary of Q. 
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Proof. (a) According to Theorem 7, Ni < kNe. In order to bound Ne, cover C 
with concentric circles of radius h, 2h, 3h, ..., r, where h = h/2, and over each circle, 
consider a set of points uniformly distributed at distance h. Then 

27rh 27r2h 27r3h 27rr 
Ne< +~~+ ~+ ~+ + ~ Ne < 1+ h h h h 

=1 + 27r(1 + 2 + +n)=1 +7r(n2 + n), 

where n = r/h = 2r/h. Then Ni < ki [1+7r(n2 + n)], and the first part of the result 
follows. 

(b) Notice that the refinement inside C has introduced at most 47rr/h points 
on the boundary of C. The number of points introduced in the exterior of C can 
be bounded by the product of the stable molecular size M of To and the number 
of vertices introduced by local refinement along each vertex, assuming a stable 
molecule of maximal side L. Thus, 

No <M27rn[1 + l0g2(1 + Lh)]. L 

Corollary 5. Under the conditions of Theorem 12, the longest-side refinement 
algorithm introduces an optimal number of points N = 0(n2) inside the refinement 
region. Furthermore, since Q is a bounded region, the time cost of the algorithm is 
linear in N. 

A stronger result was introduced in [19]. Specifically, it was proved that the 
number of points inserted outside R is of order O(n log2 n), both for circular 
and rectangular refinement regions, which allows us to conclude that this is true 
for general convex refinement regions. Empirical evidence, which is in complete 
agreement with the theory, even for small values of N, was also included in that 
paper. 

9. CONCLUDING REMARKS 

In this paper we have discussed results which characterize, in a geometrical 
sense, the global point distribution introduced by the iterative 4-triangles longest- 
side partition of triangles. We have also discussed a practical 4-triangles refinement 
algorithm, proving that it has linear complexity, independently of the size of the 
triangulation. To this end, the "fractal" properties of the longest-side bisection 
algorithm (which characterize the local point distribution introduced by the algo- 
rithm) were used. Numerical experiments illustrating the practical behavior of the 
linear algorithm can be found in [19]. 

A discussion on the triangulation refinement problem and on the difficulties 
arising with the pure Delaunay algorithm to deal with this problem have also been 
included in this paper. In essence, this algorithm does not contain a natural point 
insertion strategy that guarantees the construction of good-quality irregular trian- 
gulations when iterative local refinement is performed. However, both the longest- 
side bisection based algorithms, and mixed (longest-side midpoint insertion) Delau- 
nay algorithms are competitive linear algorithms for the triangulation refinement 
problem. In a forthcoming paper we shall discuss mixed Delaunay algorithms in 
more detail. 
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